Read in the data and create separate slope variables and obsid variable.
library(dyadr)
library(dplyr)
library(nlme)
kashy_ppp <- read.csv("kashy.csv")
kashy_ppp <- kashy_ppp %>%
mutate(obsid = Day+14*(DYADID-1))
Use the lmeControl()
function to tweak model estimation options.
#?lmeControl
ctrl <- lmeControl(msMaxIter=10000,
MaxIter=100000,
msMaxEval=10000,
returnObject=TRUE,
niterEM=10000,
nlmStepMax=1000)
kashy_ppp <- kashy_ppp %>%
group_by(DYADID, Person) %>%
mutate(AsatisfC_lag = lag(AsatisfC),
PsatisfC_lag = lag(PsatisfC))
Use the lagged actor and partner variables.
stab_infl_2int <- lme(ASATISF ~ GenderS + GenderS:AsatisfC_lag
+ GenderS:PsatisfC_lag - 1,
data = kashy_ppp,
random = ~ GenderS + GenderS:AsatisfC_lag
+ GenderS:PsatisfC_lag - 1|DYADID,
correlation = corCompSymm(form = ~1|DYADID/obsid),
weights = varIdent(form = ~1|GenderS),
na.action = na.omit,
control = ctrl)
smallsummary(stab_infl_2int)
## Random effects:
## Formula: ~GenderS + GenderS:AsatisfC_lag + GenderS:PsatisfC_lag - 1 | DYADID
## Structure: General positive-definite, Log-Cholesky parametrization
## StdDev Corr
## GenderSMan 0.3674092 GndrSM GndrSW GSM:AC GSW:AC GSM:PC
## GenderSWoman 0.2872582 0.784
## GenderSMan:AsatisfC_lag 0.2180435 -0.233 -0.070
## GenderSWoman:AsatisfC_lag 0.1850458 -0.206 -0.706 -0.229
## GenderSMan:PsatisfC_lag 0.1581867 -0.251 -0.657 -0.149 0.736
## GenderSWoman:PsatisfC_lag 0.2510808 0.174 0.157 0.718 -0.319 0.128
## Residual 0.5810990
##
## Value Std.Error DF t-value p-value
## GenderSMan 6.3728 0.0416 2539 153.2250 0.0000
## GenderSWoman 6.4140 0.0358 2539 179.0210 0.0000
## GenderSMan:AsatisfC_lag 0.2862 0.0404 2539 7.0812 0.0000
## GenderSWoman:AsatisfC_lag 0.2601 0.0387 2539 6.7219 0.0000
## GenderSMan:PsatisfC_lag 0.0246 0.0350 2539 0.7048 0.4810
## GenderSWoman:PsatisfC_lag 0.0672 0.0413 2539 1.6255 0.1042
## 2.5% 97.5%
## GenderSMan 6.2913 6.4544
## GenderSWoman 6.3437 6.4842
## GenderSMan:AsatisfC_lag 0.2069 0.3654
## GenderSWoman:AsatisfC_lag 0.1842 0.3360
## GenderSMan:PsatisfC_lag -0.0439 0.0932
## GenderSWoman:PsatisfC_lag -0.0139 0.1483
stab_infl <- lme(ASATISF ~ GENDER*AsatisfC_lag + GENDER*PsatisfC_lag,
data = kashy_ppp,
random = ~ GenderS + GenderS:AsatisfC_lag
+ GenderS:PsatisfC_lag - 1|DYADID,
correlation = corCompSymm(form = ~1|DYADID/obsid),
weights = varIdent(form = ~1|GenderS),
na.action = na.omit,
control = ctrl)
smallsummary(stab_infl)
## Random effects:
## Formula: ~GenderS + GenderS:AsatisfC_lag + GenderS:PsatisfC_lag - 1 | DYADID
## Structure: General positive-definite, Log-Cholesky parametrization
## StdDev Corr
## GenderSMan 0.3674099 GndrSM GndrSW GSM:AC GSW:AC GSM:PC
## GenderSWoman 0.2872588 0.784
## GenderSMan:AsatisfC_lag 0.2180432 -0.233 -0.070
## GenderSWoman:AsatisfC_lag 0.1850460 -0.206 -0.706 -0.229
## GenderSMan:PsatisfC_lag 0.1581862 -0.251 -0.657 -0.149 0.736
## GenderSWoman:PsatisfC_lag 0.2510806 0.174 0.157 0.718 -0.319 0.128
## Residual 0.5810991
##
## Value Std.Error DF t-value p-value
## (Intercept) 6.3934 0.0358 2539 178.4926 0.0000
## GENDER -0.0206 0.0150 2539 -1.3754 0.1691
## AsatisfC_lag 0.2732 0.0252 2539 10.8283 0.0000
## PsatisfC_lag 0.0459 0.0262 2539 1.7548 0.0794
## GENDER:AsatisfC_lag 0.0130 0.0305 2539 0.4273 0.6692
## GENDER:PsatisfC_lag -0.0213 0.0279 2539 -0.7614 0.4465
## 2.5% 97.5%
## (Intercept) 6.3232 6.4636
## GENDER -0.0499 0.0088
## AsatisfC_lag 0.2237 0.3226
## PsatisfC_lag -0.0054 0.0972
## GENDER:AsatisfC_lag -0.0467 0.0728
## GENDER:PsatisfC_lag -0.0761 0.0335