Back to schedule


Getting Started

library(lavaan)
 riggsd <- read.csv("riggsd.csv", header=TRUE) 

Testing the model that Childhood Abuse leads to Anxious Attachment which in turn leads to lower Relationship Satisfaction for men and women. First the model is estimated treating dyad members as indistinguishable:

Distinguishable Dyads

Med_D <- '
Anxiety_M  ~ aa1*Abuse_M
Anxiety_W  ~ aa2*Abuse_W
Anxiety_M  ~ pa1*Abuse_W
Anxiety_W  ~ pa2*Abuse_M
Sat_M  ~ ab1*Anxiety_M
Sat_W  ~ ab2*Anxiety_W
Sat_M  ~ pb1*Anxiety_W
Sat_W  ~ pb2*Anxiety_M
Sat_M  ~ ac1*Abuse_M
Sat_W  ~ ac2*Abuse_W
Sat_M  ~ pc1*Abuse_W
Sat_W  ~ pc2*Abuse_M
Abuse_M ~ m11*1
Abuse_W ~ m12*1
Sat_M ~ m21*1
Sat_W ~ m22*1
Anxiety_M ~ m31*1
Anxiety_W ~ m32*1
Abuse_M ~~ v11*Abuse_M
Abuse_W ~~ v12*Abuse_W
Sat_M ~~ v21*Sat_M
Sat_W ~~ v22*Sat_W
Anxiety_M ~~ v31*Anxiety_M
Anxiety_W ~~ v32*Anxiety_W
Abuse_W ~~ Abuse_M
Sat_W ~~ Sat_M
Anxiety_W ~~ Anxiety_M
  ka1 := pa1/aa1
  kb1 := pb1/ab1
  AA_ie1 := aa1*ab1
  AP_ie1 := aa2*pb1
  PA_ie1 := pa1*ab1
  PP_ie1 := pa2*pb1
  total_ie_a1 := aa1*ab1 + pa2*pb1
  total_ie_p1 := aa2*pb1 + pa2*ab1
  total_a1 := aa1*ab1 + pa1*pb1 + ac1
  total_p1 := aa2*pb1 + pa2*ab1 + pc1
  ka2 := pa2/aa2
  kb2 := pb2/ab2
  AA_ie2 := aa2*ab2
  AP_ie2 := aa1*pb2
  PA_ie2 := pa2*ab2
  PP_ie2 := pa1*pb2
  total_ie_a2 := aa2*ab2 + pa1*pb2
  total_ie_p2 := aa2*pb2 + pa2*ab2
  total_a2 := aa2*ab2 + pa2*pb2 + ac2
  total_p2 := aa1*pb2 + pa1*ab2 + pc2
'


# Change to 5000 when bootstrapping.
medd <- sem(Med_D,fixed.x=FALSE, data = riggsd,missing="fiml",se = "boot",bootstrap= 50)

summary(medd, fit.measures = TRUE)
## lavaan (0.5-23.1097) converged normally after  93 iterations
## 
##   Number of observations                           155
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              172.980
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2379.613
##   Loglikelihood unrestricted model (H1)      -2379.613
## 
##   Number of free parameters                         27
##   Akaike (AIC)                                4813.226
##   Bayesian (BIC)                              4895.399
##   Sample-size adjusted Bayesian (BIC)         4809.937
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                            Bootstrap
##   Number of requested bootstrap draws               50
##   Number of successful bootstrap draws              49
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Anxiety_M ~                                         
##     Abuse_M  (aa1)    0.056    0.024    2.298    0.022
##   Anxiety_W ~                                         
##     Abuse_W  (aa2)    0.093    0.020    4.621    0.000
##   Anxiety_M ~                                         
##     Abuse_W  (pa1)    0.022    0.018    1.193    0.233
##   Anxiety_W ~                                         
##     Abuse_M  (pa2)    0.014    0.025    0.576    0.564
##   Sat_M ~                                             
##     Anxity_M (ab1)   -1.634    0.505   -3.237    0.001
##   Sat_W ~                                             
##     Anxity_W (ab2)   -1.525    0.501   -3.043    0.002
##   Sat_M ~                                             
##     Anxity_W (pb1)   -1.168    0.437   -2.673    0.008
##   Sat_W ~                                             
##     Anxity_M (pb2)   -1.210    0.408   -2.963    0.003
##   Sat_M ~                                             
##     Abuse_M  (ac1)   -0.072    0.112   -0.643    0.520
##   Sat_W ~                                             
##     Abuse_W  (ac2)   -0.249    0.139   -1.791    0.073
##   Sat_M ~                                             
##     Abuse_W  (pc1)   -0.030    0.127   -0.236    0.813
##   Sat_W ~                                             
##     Abuse_M  (pc2)   -0.136    0.121   -1.121    0.262
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Abuse_M ~~                                          
##     Abuse_W           1.532    1.368    1.120    0.263
##  .Sat_M ~~                                            
##    .Sat_W            27.053    3.311    8.171    0.000
##  .Anxiety_M ~~                                        
##    .Anxiety_W         0.227    0.113    2.013    0.044
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     Abuse_M  (m11)    8.333    0.283   29.430    0.000
##     Abuse_W  (m12)    9.442    0.394   23.996    0.000
##    .Sat_M    (m21)   53.461    1.882   28.407    0.000
##    .Sat_W    (m22)   55.910    2.190   25.534    0.000
##    .Anxity_M (m31)    1.963    0.277    7.092    0.000
##    .Anxity_W (m32)    1.928    0.255    7.553    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     Abuse_M  (v11)   17.514    2.443    7.169    0.000
##     Abuse_W  (v12)   23.314    3.108    7.501    0.000
##    .Sat_M    (v21)   43.110    4.380    9.842    0.000
##    .Sat_W    (v22)   44.147    5.310    8.314    0.000
##    .Anxity_M (v31)    1.523    0.099   15.333    0.000
##    .Anxity_W (v32)    1.237    0.120   10.287    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ka1               0.392    0.461    0.850    0.395
##     kb1               0.715    0.395    1.809    0.070
##     AA_ie1           -0.091    0.055   -1.656    0.098
##     AP_ie1           -0.109    0.055   -1.972    0.049
##     PA_ie1           -0.036    0.035   -1.020    0.308
##     PP_ie1           -0.017    0.034   -0.485    0.628
##     total_ie_a1      -0.108    0.072   -1.496    0.135
##     total_ie_p1      -0.132    0.068   -1.953    0.051
##     total_a1         -0.188    0.122   -1.543    0.123
##     total_p1         -0.162    0.129   -1.261    0.207
##     ka2               0.154    0.325    0.473    0.636
##     kb2               0.793    0.641    1.237    0.216
##     AA_ie2           -0.142    0.057   -2.483    0.013
##     AP_ie2           -0.067    0.037   -1.814    0.070
##     PA_ie2           -0.022    0.042   -0.515    0.607
##     PP_ie2           -0.026    0.027   -0.960    0.337
##     total_ie_a2      -0.168    0.069   -2.434    0.015
##     total_ie_p2      -0.134    0.060   -2.253    0.024
##     total_a2         -0.409    0.131   -3.121    0.002
##     total_p2         -0.236    0.144   -1.637    0.102
parameterEstimates(medd, standardized = TRUE)
##            lhs op                 rhs       label    est    se      z
## 1    Anxiety_M  ~             Abuse_M         aa1  0.056 0.024  2.298
## 2    Anxiety_W  ~             Abuse_W         aa2  0.093 0.020  4.621
## 3    Anxiety_M  ~             Abuse_W         pa1  0.022 0.018  1.193
## 4    Anxiety_W  ~             Abuse_M         pa2  0.014 0.025  0.576
## 5        Sat_M  ~           Anxiety_M         ab1 -1.634 0.505 -3.237
## 6        Sat_W  ~           Anxiety_W         ab2 -1.525 0.501 -3.043
## 7        Sat_M  ~           Anxiety_W         pb1 -1.168 0.437 -2.673
## 8        Sat_W  ~           Anxiety_M         pb2 -1.210 0.408 -2.963
## 9        Sat_M  ~             Abuse_M         ac1 -0.072 0.112 -0.643
## 10       Sat_W  ~             Abuse_W         ac2 -0.249 0.139 -1.791
## 11       Sat_M  ~             Abuse_W         pc1 -0.030 0.127 -0.236
## 12       Sat_W  ~             Abuse_M         pc2 -0.136 0.121 -1.121
## 13     Abuse_M ~1                             m11  8.333 0.283 29.430
## 14     Abuse_W ~1                             m12  9.442 0.394 23.996
## 15       Sat_M ~1                             m21 53.461 1.882 28.407
## 16       Sat_W ~1                             m22 55.910 2.190 25.534
## 17   Anxiety_M ~1                             m31  1.963 0.277  7.092
## 18   Anxiety_W ~1                             m32  1.928 0.255  7.553
## 19     Abuse_M ~~             Abuse_M         v11 17.514 2.443  7.169
## 20     Abuse_W ~~             Abuse_W         v12 23.314 3.108  7.501
## 21       Sat_M ~~               Sat_M         v21 43.110 4.380  9.842
## 22       Sat_W ~~               Sat_W         v22 44.147 5.310  8.314
## 23   Anxiety_M ~~           Anxiety_M         v31  1.523 0.099 15.333
## 24   Anxiety_W ~~           Anxiety_W         v32  1.237 0.120 10.287
## 25     Abuse_M ~~             Abuse_W              1.532 1.368  1.120
## 26       Sat_M ~~               Sat_W             27.053 3.311  8.171
## 27   Anxiety_M ~~           Anxiety_W              0.227 0.113  2.013
## 28         ka1 :=             pa1/aa1         ka1  0.392 0.461  0.850
## 29         kb1 :=             pb1/ab1         kb1  0.715 0.395  1.809
## 30      AA_ie1 :=             aa1*ab1      AA_ie1 -0.091 0.055 -1.656
## 31      AP_ie1 :=             aa2*pb1      AP_ie1 -0.109 0.055 -1.972
## 32      PA_ie1 :=             pa1*ab1      PA_ie1 -0.036 0.035 -1.020
## 33      PP_ie1 :=             pa2*pb1      PP_ie1 -0.017 0.034 -0.485
## 34 total_ie_a1 :=     aa1*ab1+pa2*pb1 total_ie_a1 -0.108 0.072 -1.496
## 35 total_ie_p1 :=     aa2*pb1+pa2*ab1 total_ie_p1 -0.132 0.068 -1.953
## 36    total_a1 := aa1*ab1+pa1*pb1+ac1    total_a1 -0.188 0.122 -1.543
## 37    total_p1 := aa2*pb1+pa2*ab1+pc1    total_p1 -0.162 0.129 -1.261
## 38         ka2 :=             pa2/aa2         ka2  0.154 0.325  0.473
## 39         kb2 :=             pb2/ab2         kb2  0.793 0.641  1.237
## 40      AA_ie2 :=             aa2*ab2      AA_ie2 -0.142 0.057 -2.483
## 41      AP_ie2 :=             aa1*pb2      AP_ie2 -0.067 0.037 -1.814
## 42      PA_ie2 :=             pa2*ab2      PA_ie2 -0.022 0.042 -0.515
## 43      PP_ie2 :=             pa1*pb2      PP_ie2 -0.026 0.027 -0.960
## 44 total_ie_a2 :=     aa2*ab2+pa1*pb2 total_ie_a2 -0.168 0.069 -2.434
## 45 total_ie_p2 :=     aa2*pb2+pa2*ab2 total_ie_p2 -0.134 0.060 -2.253
## 46    total_a2 := aa2*ab2+pa2*pb2+ac2    total_a2 -0.409 0.131 -3.121
## 47    total_p2 := aa1*pb2+pa1*ab2+pc2    total_p2 -0.236 0.144 -1.637
##    pvalue ci.lower ci.upper std.lv std.all std.nox
## 1   0.022    0.013    0.112  0.056   0.185   0.185
## 2   0.000    0.054    0.149  0.093   0.374   0.374
## 3   0.233   -0.011    0.074  0.022   0.083   0.083
## 4   0.564   -0.036    0.069  0.014   0.050   0.050
## 5   0.001   -2.883   -0.714 -1.634  -0.288  -0.288
## 6   0.002   -2.474   -0.366 -1.525  -0.247  -0.247
## 7   0.008   -2.121   -0.219 -1.168  -0.197  -0.197
## 8   0.003   -1.979   -0.019 -1.210  -0.205  -0.205
## 9   0.520   -0.360    0.161 -0.072  -0.042  -0.042
## 10  0.073   -0.589    0.034 -0.249  -0.162  -0.162
## 11  0.813   -0.287    0.283 -0.030  -0.020  -0.020
## 12  0.262   -0.385    0.064 -0.136  -0.076  -0.076
## 13  0.000    7.868    9.116  8.333   1.991   1.991
## 14  0.000    8.651   10.219  9.442   1.956   1.956
## 15  0.000   48.832   57.617 53.461   7.479   7.479
## 16  0.000   50.337   59.302 55.910   7.516   7.516
## 17  0.000    1.383    2.544  1.963   1.556   1.556
## 18  0.000    1.434    2.438  1.928   1.603   1.603
## 19  0.000   13.547   25.217 17.514   1.000   1.000
## 20  0.000   17.466   30.431 23.314   1.000   1.000
## 21  0.000   32.002   52.491 43.110   0.844   0.844
## 22  0.000   33.051   53.945 44.147   0.798   0.798
## 23  0.000    1.285    1.695  1.523   0.957   0.957
## 24  0.000    0.966    1.476  1.237   0.855   0.855
## 25  0.263   -1.623    4.452  1.532   0.076   0.076
## 26  0.000   19.501   31.666 27.053   0.620   0.620
## 27  0.044    0.003    0.442  0.227   0.166   0.166
## 28  0.395   -0.225    2.137  0.392   0.452   0.452
## 29  0.070    0.180    1.987  0.715   0.682   0.682
## 30  0.098   -0.229   -0.014 -0.091  -0.053  -0.053
## 31  0.049   -0.272   -0.019 -0.109  -0.073  -0.073
## 32  0.308   -0.125    0.015 -0.036  -0.024  -0.024
## 33  0.628   -0.110    0.064 -0.017  -0.010  -0.010
## 34  0.135   -0.269    0.028 -0.108  -0.063  -0.063
## 35  0.051   -0.342   -0.014 -0.132  -0.088  -0.088
## 36  0.123   -0.497    0.011 -0.188  -0.112  -0.112
## 37  0.207   -0.474    0.104 -0.162  -0.108  -0.108
## 38  0.636   -0.350    1.146  0.154   0.133   0.133
## 39  0.216    0.031    3.399  0.793   0.832   0.832
## 40  0.013   -0.281   -0.035 -0.142  -0.092  -0.092
## 41  0.070   -0.163   -0.003 -0.067  -0.038  -0.038
## 42  0.607   -0.122    0.066 -0.022  -0.012  -0.012
## 43  0.337   -0.117    0.010 -0.026  -0.017  -0.017
## 44  0.015   -0.349   -0.048 -0.168  -0.109  -0.109
## 45  0.024   -0.300   -0.003 -0.134  -0.089  -0.089
## 46  0.002   -0.702   -0.090 -0.409  -0.264  -0.264
## 47  0.102   -0.531    0.028 -0.236  -0.135  -0.135

Estimates the same as with gls. Standard errors, t values, and p values slightly different (gls are “better”).

Note that indirect effect (ie), total indirect effects (total_ie), and total effects (total) are computed.

From APIMeM app:

https://davidakenny.shinyapps.io/APIMeM/

Mediation Indistinguishable 

Indistinguishable Dyads

Medi <- '
Anxiety_M  ~ aa*Abuse_M
Anxiety_W  ~ aa*Abuse_W
Anxiety_M  ~ pa*Abuse_W
Anxiety_W  ~ pa*Abuse_M
Sat_M  ~ ab*Anxiety_M
Sat_W  ~ ab*Anxiety_W
Sat_M  ~ pb*Anxiety_W
Sat_W  ~ pb*Anxiety_M
Sat_M  ~ ac*Abuse_M
Sat_W  ~ ac*Abuse_W
Sat_M  ~ pc*Abuse_W
Sat_W  ~ pc*Abuse_M
Abuse_M ~ m1*1
Abuse_W ~ m1*1
Sat_M ~ m2*1
Sat_W ~ m2*1
Anxiety_M ~ m3*1
Anxiety_W ~ m3*1
Abuse_M ~~ v1*Abuse_M
Abuse_W ~~ v1*Abuse_W
Sat_M ~~ v2*Sat_M
Sat_W ~~ v2*Sat_W
Anxiety_M ~~ v3*Anxiety_M
Anxiety_W ~~ v3*Anxiety_W
Abuse_W ~~ Abuse_M
Sat_W ~~ Sat_M
Anxiety_W ~~ Anxiety_M
  ka := pa/aa
  kb := pb/ab
  AA_ie := aa*ab
  AP_ie := aa*pb
  PA_ie := pa*ab
  PP_ie := pa*pb
  total_ie_a := aa*ab + pa*pb
  total_ie_p := aa*pb + pa*ab
  total_a := aa*ab + pa*pb + ac
  total_p := aa*pb + pa*ab + pc
'
# Change to "bootstrap = 5000" to get reliable values for the confidence interval.  
Med_i <- sem(Medi,fixed.x=FALSE, data = riggsd,missing="fiml",se = "boot",bootstrap= 50)
summary(Med_i, fit.measures = TRUE)
## lavaan (0.5-23.1097) converged normally after  59 iterations
## 
##   Number of observations                           155
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic               18.784
##   Degrees of freedom                                12
##   P-value (Chi-square)                           0.094
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              172.980
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.957
##   Tucker-Lewis Index (TLI)                       0.946
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2389.005
##   Loglikelihood unrestricted model (H1)      -2379.613
## 
##   Number of free parameters                         15
##   Akaike (AIC)                                4808.010
##   Bayesian (BIC)                              4853.661
##   Sample-size adjusted Bayesian (BIC)         4806.183
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.060
##   90 Percent Confidence Interval          0.000  0.110
##   P-value RMSEA <= 0.05                          0.331
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.077
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                            Bootstrap
##   Number of requested bootstrap draws               50
##   Number of successful bootstrap draws              50
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Anxiety_M ~                                         
##     Abuse_M   (aa)    0.080    0.015    5.249    0.000
##   Anxiety_W ~                                         
##     Abuse_W   (aa)    0.080    0.015    5.249    0.000
##   Anxiety_M ~                                         
##     Abuse_W   (pa)    0.015    0.014    1.072    0.284
##   Anxiety_W ~                                         
##     Abuse_M   (pa)    0.015    0.014    1.072    0.284
##   Sat_M ~                                             
##     Anxiety_M (ab)   -1.601    0.376   -4.262    0.000
##   Sat_W ~                                             
##     Anxiety_W (ab)   -1.601    0.376   -4.262    0.000
##   Sat_M ~                                             
##     Anxiety_W (pb)   -1.182    0.332   -3.559    0.000
##   Sat_W ~                                             
##     Anxiety_M (pb)   -1.182    0.332   -3.559    0.000
##   Sat_M ~                                             
##     Abuse_M   (ac)   -0.169    0.087   -1.937    0.053
##   Sat_W ~                                             
##     Abuse_W   (ac)   -0.169    0.087   -1.937    0.053
##   Sat_M ~                                             
##     Abuse_W   (pc)   -0.076    0.071   -1.080    0.280
##   Sat_W ~                                             
##     Abuse_M   (pc)   -0.076    0.071   -1.080    0.280
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Abuse_M ~~                                          
##     Abuse_W           1.225    1.443    0.849    0.396
##  .Sat_M ~~                                            
##    .Sat_W            26.853    3.515    7.639    0.000
##  .Anxiety_M ~~                                        
##    .Anxiety_W         0.217    0.116    1.874    0.061
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     Abuse_M   (m1)    8.888    0.265   33.600    0.000
##     Abuse_W   (m1)    8.888    0.265   33.600    0.000
##    .Sat_M     (m2)   54.732    1.714   31.936    0.000
##    .Sat_W     (m2)   54.732    1.714   31.936    0.000
##    .Anxiety_M (m3)    1.932    0.214    9.013    0.000
##    .Anxiety_W (m3)    1.932    0.214    9.013    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     Abuse_M   (v1)   20.722    1.807   11.465    0.000
##     Abuse_W   (v1)   20.722    1.807   11.465    0.000
##    .Sat_M     (v2)   43.853    3.674   11.937    0.000
##    .Sat_W     (v2)   43.853    3.674   11.937    0.000
##    .Anxiety_M (v3)    1.400    0.085   16.503    0.000
##    .Anxiety_W (v3)    1.400    0.085   16.503    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ka                0.189    0.182    1.033    0.301
##     kb                0.738    0.217    3.404    0.001
##     AA_ie            -0.129    0.049   -2.630    0.009
##     AP_ie            -0.095    0.034   -2.767    0.006
##     PA_ie            -0.024    0.026   -0.926    0.355
##     PP_ie            -0.018    0.020   -0.875    0.381
##     total_ie_a       -0.146    0.059   -2.498    0.012
##     total_ie_p       -0.119    0.053   -2.242    0.025
##     total_a          -0.315    0.097   -3.244    0.001
##     total_p          -0.196    0.088   -2.211    0.027
parameterEstimates(Med_i, standardized = TRUE)
##           lhs op            rhs      label    est    se      z pvalue
## 1   Anxiety_M  ~        Abuse_M         aa  0.080 0.015  5.249  0.000
## 2   Anxiety_W  ~        Abuse_W         aa  0.080 0.015  5.249  0.000
## 3   Anxiety_M  ~        Abuse_W         pa  0.015 0.014  1.072  0.284
## 4   Anxiety_W  ~        Abuse_M         pa  0.015 0.014  1.072  0.284
## 5       Sat_M  ~      Anxiety_M         ab -1.601 0.376 -4.262  0.000
## 6       Sat_W  ~      Anxiety_W         ab -1.601 0.376 -4.262  0.000
## 7       Sat_M  ~      Anxiety_W         pb -1.182 0.332 -3.559  0.000
## 8       Sat_W  ~      Anxiety_M         pb -1.182 0.332 -3.559  0.000
## 9       Sat_M  ~        Abuse_M         ac -0.169 0.087 -1.937  0.053
## 10      Sat_W  ~        Abuse_W         ac -0.169 0.087 -1.937  0.053
## 11      Sat_M  ~        Abuse_W         pc -0.076 0.071 -1.080  0.280
## 12      Sat_W  ~        Abuse_M         pc -0.076 0.071 -1.080  0.280
## 13    Abuse_M ~1                        m1  8.888 0.265 33.600  0.000
## 14    Abuse_W ~1                        m1  8.888 0.265 33.600  0.000
## 15      Sat_M ~1                        m2 54.732 1.714 31.936  0.000
## 16      Sat_W ~1                        m2 54.732 1.714 31.936  0.000
## 17  Anxiety_M ~1                        m3  1.932 0.214  9.013  0.000
## 18  Anxiety_W ~1                        m3  1.932 0.214  9.013  0.000
## 19    Abuse_M ~~        Abuse_M         v1 20.722 1.807 11.465  0.000
## 20    Abuse_W ~~        Abuse_W         v1 20.722 1.807 11.465  0.000
## 21      Sat_M ~~          Sat_M         v2 43.853 3.674 11.937  0.000
## 22      Sat_W ~~          Sat_W         v2 43.853 3.674 11.937  0.000
## 23  Anxiety_M ~~      Anxiety_M         v3  1.400 0.085 16.503  0.000
## 24  Anxiety_W ~~      Anxiety_W         v3  1.400 0.085 16.503  0.000
## 25    Abuse_M ~~        Abuse_W             1.225 1.443  0.849  0.396
## 26      Sat_M ~~          Sat_W            26.853 3.515  7.639  0.000
## 27  Anxiety_M ~~      Anxiety_W             0.217 0.116  1.874  0.061
## 28         ka :=          pa/aa         ka  0.189 0.182  1.033  0.301
## 29         kb :=          pb/ab         kb  0.738 0.217  3.404  0.001
## 30      AA_ie :=          aa*ab      AA_ie -0.129 0.049 -2.630  0.009
## 31      AP_ie :=          aa*pb      AP_ie -0.095 0.034 -2.767  0.006
## 32      PA_ie :=          pa*ab      PA_ie -0.024 0.026 -0.926  0.355
## 33      PP_ie :=          pa*pb      PP_ie -0.018 0.020 -0.875  0.381
## 34 total_ie_a :=    aa*ab+pa*pb total_ie_a -0.146 0.059 -2.498  0.012
## 35 total_ie_p :=    aa*pb+pa*ab total_ie_p -0.119 0.053 -2.242  0.025
## 36    total_a := aa*ab+pa*pb+ac    total_a -0.315 0.097 -3.244  0.001
## 37    total_p := aa*pb+pa*ab+pc    total_p -0.196 0.088 -2.211  0.027
##    ci.lower ci.upper std.lv std.all std.nox
## 1     0.047    0.114  0.080   0.294   0.294
## 2     0.047    0.114  0.080   0.294   0.294
## 3    -0.007    0.051  0.015   0.056   0.056
## 4    -0.007    0.051  0.015   0.056   0.056
## 5    -2.411   -0.930 -1.601  -0.272  -0.272
## 6    -2.411   -0.930 -1.601  -0.272  -0.272
## 7    -1.913   -0.371 -1.182  -0.201  -0.201
## 8    -1.913   -0.371 -1.182  -0.201  -0.201
## 9    -0.356    0.016 -0.169  -0.105  -0.105
## 10   -0.356    0.016 -0.169  -0.105  -0.105
## 11   -0.263    0.041 -0.076  -0.048  -0.048
## 12   -0.263    0.041 -0.076  -0.048  -0.048
## 13    8.378    9.628  8.888   1.952   1.952
## 14    8.378    9.628  8.888   1.952   1.952
## 15   51.553   58.427 54.732   7.502   7.502
## 16   51.553   58.427 54.732   7.502   7.502
## 17    1.444    2.331  1.932   1.556   1.556
## 18    1.444    2.331  1.932   1.556   1.556
## 19   17.134   24.807 20.722   1.000   1.000
## 20   17.134   24.807 20.722   1.000   1.000
## 21   35.411   50.050 43.853   0.824   0.824
## 22   35.411   50.050 43.853   0.824   0.824
## 23    1.135    1.548  1.400   0.908   0.908
## 24    1.135    1.548  1.400   0.908   0.908
## 25   -1.787    4.307  1.225   0.059   0.059
## 26   20.134   34.668 26.853   0.612   0.612
## 27   -0.033    0.418  0.217   0.155   0.155
## 28   -0.100    0.731  0.189   0.189   0.189
## 29    0.277    1.264  0.738   0.738   0.738
## 30   -0.276   -0.061 -0.129  -0.080  -0.080
## 31   -0.182   -0.035 -0.095  -0.059  -0.059
## 32   -0.101    0.014 -0.024  -0.015  -0.015
## 33   -0.081    0.011 -0.018  -0.011  -0.011
## 34   -0.325   -0.074 -0.146  -0.091  -0.091
## 35   -0.250   -0.035 -0.119  -0.074  -0.074
## 36   -0.552   -0.132 -0.315  -0.197  -0.197
## 37   -0.397   -0.072 -0.196  -0.122  -0.122

As this model is just-identified, the chi square is for the I-SAT model. As it is not statistically significant, it indicates that it is sensible to treat dyad members as if they were indistinguishable.


Back to schedule