R WORKSHOP – DAY 2

Randi L. Garcia Smith College July 17th, 19th, and 21st

DAY 2

- ANOVA and regression
- Preparing APA style manuscripts
- Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA)
- Path Analysis and SEM

- Analysis of Variance (ANOVA) is used to compare the means of a numerical variable across levels of a categorical variable (3+ levels)
 - Only 2 levels, what test do we use?
- Simple Linear Regression (SLR) is used to find the relationship between one numerical predictor variable and one numerical response (outcome or DV) variable.
- **Multiple Regression** is used to find the relationship between predictor and response controlling for other variables.

- Logistic Regression is used to model the probability of being in a certain group based on numerical predictors.
 - i.e., The response variable is dichotomous
 - This is called a Generalized Linear Model (GLM)
- χ²-Test (Chi-squared Test) is used to test if two categorical variables are associated.
 - For example, is the distribution of education levels more skewed towards higher degrees for men than for women?

	Response (DV or outcome variable)					
Explanatory (IV or predictor)	Numerical	Categorical (2 levels: dichotomous)				
Categorical (levels = 2)	t-Test	χ²-Test (two-prop test)				
1 Numerical	SLR	Logistic Regression				
Categorical (levels >= 3)	ANOVA	χ²-Test				
2 or more Numerical	Multiple Regression	Logistic Regression				

Inference Test	R function
t-Test	t.test()
ANOVA	aov()
SLR and Multiple Regression	lm()
χ²-Test	chisq.test()
Logistic Regression	glm()

R MARKDOWN FILE

PREPARING APA STYLE MANUSCRIPTS

Connie Zhang, 19' and Emma Ning, 19'

Exploratory Factor Analysis (EFA)

- Often we want to be able to describe a relatively large number of **items** by a much fewer number of **factors**.
- In the bfi dataset there are 25 items measuring personality, but are there just a few underlying factors that are responsible for people's scores on those items?
- We might guess what those are (e.g., extroversion, conscientiousness, etc.), but if we didn't know we could use **EFA** to let the data tell us about the underlying dimensions.

Exploratory Factor Analysis (EFA)

- Exploratory Factor Analysis (EFA) will use inter-correlations among the items to give us a sense of...
 - 1. how many factors may be present,
 - 2. which items can be explained by which factors, and
 - 3. the extent to which these underlying factors are correlated with each other.

- EFA is just that, exploratory.
 - It is important to keep in mind that in the end this is a data driven technique. Meaning that peculiarities in the data may lead you to a rather weird solution.
 - It takes some sense finesse, listen to what your data is telling you.

PA1

Factor Analysis

• Unrotated solution

	PA1	PA2
A1	-0.26	-0.29
AZ	0.55	0.40
A3	0.59	0.46
A4	0.47	0.18
A5	0.51	0.34
C1	0.42	-0.36
CZ	0.51	-0.37
C3	0.47	-0.29
C4	-0.53	0.37
C5	-0.51	0.29

PA1

Factor Analysis

Exploratory Factor Analysis (EFA)

8

• 6

0.6

7

Exploratory Factor Analysis (EFA)

• We will use the psych package

Inference Test	R function
Factor Analysis	fa()
Principal Component Analysis	principal()

R MARKDOWN FILE

Confirmatory Factor Analysis (CFA)

data(HolzingerSwineford1939)

- Mental ability test score from 7th and 8th grade children from two schools
 - A visual factor measured by 3 variables: x1, x2 and x3
 - A *textual* factor measured by 3 variables: x4, x5 and x6
 - A *speed* factor measured by 3 variables: x7, x8 and x9
- We want to test if indeed these measures fall on these three scales as we hypothesize.
- We are *confirming* a hypothesized factor structure instead of exploring.

Confirmatory Factor Analysis (CFA)

• Does the model we have in our heads actually fit the data?

• Assessed with fit statistics

							Model								
Data cor matrix			Model implied cor matrix					natrix							
	A1	AZ	A3	C1	C2	C3				A1	AZ	A3	C1	C2	C3
A1	1.000	-0.340	-0.265	0.028	0.016	-0.019	(cns)		A1	1.000					
AZ	-0.340	1.000	0.485	0.092	0.136	0.192	\bigcirc	PC1 *	AZ	-0.337	1.000				
A3	-0.265	0.485	1.000	0.097	0.141	0.132		1 A 3	A3	-0.256	0.492	1.000			
C1	0.028	0.092	0.097	1.000	0.428	0.308	agr	₩. 1.13 1.13	C1	-0.063	0.122	0.093	1.000		
CZ	0.016	0.136	0.141	0.428	1.000	0.356		+ A2	CZ	-0.074	0.143	0.109	0.418	1.000	
C3	-0.019	0.192	0.132	0.308	0.356	1.000		<u> </u>	C3	-0.056	0.108	0.082	0.316	0.370	1.000
			K					A1				_			
							Fit2								

Confirmatory Factor Analysis (CFA)

- We will use the R package lavaan to fit CFAs
 - most widely used Structural Equation Modeling (SEM) package in R.
- Step 1: Specify the model
- Step 2: Fit the model
- **Step 3:** Ask for the output you want

Step 1: Specify the Model

HS.model	<-	'	visual	=~	x1	+	x2	+	x3	
			textual	=~	x4	+	x5	+	хб	
			speed	=~	x7	+	x8	+	x9	

Step 2: Fit the Model

х1 х2 xЗ visual x4 x5 textual x6 speed x7 х8 х9

fit <- cfa(HS.model, data = HolzingerSwineford1939)</pre>

Step 3: Ask for the output you want

summary(fit, fit.measures = TRUE)

parameterEstimates(fit)

inspect(fit)

modindices(fit)

Path Analysis and SEM

- Now we can add regression equations in the mix with our latent variables.
- We can use our latent variables as predictors (IVs) or as response variables (DVs).
- Simultaneously estimate multiple regression equations
 - A **multivariate data analysis** approach because we can have multiple response variables.
 - Think solving a system of equations!

Path Analysis and SEM

R MARKDOWN FILE