RWORKSHOP – DAY 1

Randi L. Garcia Smith College July 17th, 19th, and 21st

- Installing R and RStudio
- RStudio environment, packages, and R Markdown
- Data cleaning
- Making figures
- Descriptive stats, correlations, reliability, t-tests

DAY 2

- ANOVA and regression
- Preparing APA style manuscripts
- Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA)
- Path Analysis and SEM

- Multilevel Modeling
- Growth Curve Modeling
- Dyadic Data Analysis

Workshop Materials

>Find the workshop schedule and data examples here:

https://randilgarcia.github.io/smith-r-workshop/

>Download ALL materials, including R-code, here:

https://github.com/RandiLGarcia/smith-r-workshop

Installing R and RStudio

- Click links on Website...
- When we're done I'll take you on a tour of RStudio

• The package we'll use for data cleaning is called dplyr.

- The Verbs
 - filter()
 - mutate()
 - rename()
 - arrange()
 - select()
 - summarize()
 - group_by()

• Each verb performs familiar operations of a dataset

Verb	What is does	in SPSS
mutate()	Creates new variables	COMPUTE (or transform in menu)
filter()	Filters for specific cases	FILTER (or select data in menu)
arrange()	Sorts using some logic	SORT
select()	Subsets for only certain variables	DROP
group_by()	Groups dataset by a categorical variable	Like split file in menu
summarize()	Create a summary table	Descriptive statistics

• We will use the pipe operator to combine verbs!

• <u>The pipe:</u>

%>%

filter(dataset, age >= 18)

... is the same as:

dataset %>% filter(age >= 18)

- Why the pipe!?!?
- Instead of reading/writing:

select(filter(mutate(dataset, bdi = bdi1 + bdi2 + bdi3), age >= 18) bdi, soc_sprt)

• We can write:

```
dataset %>%
 mutate(bdi = bdi1 + bdi2 + bdi3) %>%
 filter(age >= 18) %>%
 select(bdi, soc_sprt)
```

• If you wanted to save this two-variable dataset:

dataset_small <- dataset %>% mutate(bdi = bdi1 + bdi2 + bdi3) %>% filter(age >= 18) %>% select(bdi, soc_sprt)

• There are also verbs for **joining two tables**

- <u>Adding cases</u> from another dataset that has the same variables
 - And also when they do not have exactly the same variables
- <u>Adding variables</u> from another dataset
 - These variables can be measured at the same level or at a higher level, as long as there are index variables.
- And verbs for transforming data from
 - Wide-to-long
 - Long-to-wide

• We can learn these on Day 3 if you want...?

R MARKDOWN FILE

- As with everything else, there are lots of ways to make figures in R
 - Base R
 - Lattice graphics
 - The ggplot2 package
- We'll be learning the ggplot2 package.
 - It makes beautiful visualizations
 - It's popular so there is a lot of help on the internet and companion code
 - Written by the same person who wrote dplyr and it works at the end of a pipeline
 - It is what Smith students know how to use

• The easiest figures are made with the qplot() function

qplot(satisfaction, data = acitelli, bins = 10)

qplot(x = tension, y = satisfaction, data = acitelli)

• The qplot() function is good for quick visualizations

• Good for probably 80% of what you'd want to do while analyzing data

• But, you'll use the ggplot() function for anything more involved, probably for making figures for publication

• The ggplot2 packages uses the "grammar of graphics"

- We independently specify pieces of the graph using the "grammar of graphics"
- Building blocks:
 - Data
 - Geometric objects (the actual things we'll draw: points, lines, boxplot, histograms, etc.)
 - Aesthetic mappings (what and where we'll draw: x-axis, y-axis, color, fill, shape, size, linetype, etc.)
 - Statistics (implied or specified computing to be done)
 - Scales (range of values, colors, or shapes)
 - Facets (the panes—there can be more than 1, layers in SPSS)
 - Guides (legends—what the humans see)

ggplot(acitelli, aes(x = satisfaction))

ggplot(acitelli, aes(x = satisfaction)) + geom_histogram()

ggplot(acitelli, aes(x = tension, y = satisfaction))

ggplot(acitelli, aes(x = tension, y = satisfaction)) + geom_point()

R MARKDOWN FILE

Correlation Matrices, Reliability, and t-Tests

- For correlation matrices and Cronbach's alpha we'll use the package called **psych**
- For t-Tests I recommend you use **mosaic** because it has that (now familiar) formula, then data, syntax

Correlation Matrices, Reliability, and t-Tests

- Correlation Matrix
 - corr.test()
 - I like to use this with select():

corr.test(select(acitelli, tension, self_pos, other_pos, satisfaction))

• Reliability

vars for matrix

- alpha()
- Also handy with select:

alpha(select(acitelli, sat1, sat2, sat3, sat4, sat5, sat6))

Correlation Matrices, Reliability, and t-Tests

• Independent samples and paired samples t-tests

t.test(satisfaction ~ Gender, data = acitelli)

t.test(self_pos, other_pos, data = acitelli, paired = TRUE)