INTRODUCTION TO DATA ANALYSIS IN R – DAY 2

Randi L. Garcia, PhD DATIC Introduction to R Workshop Session 1: June 7th and 8th Session 2: June 21st and 22nd

DAY 2

- ANOVA and regression
- Preparing APA style manuscripts
- Exploratory Factor Analysis (EFA)
- Confirmatory Factor Analysis (CFA)
- Path Analysis and Structural Equation Modeling (time?)

ANOVA AND REGRESSION

- Analysis of Variance (ANOVA) is used to compare the means of a numerical variable across levels of a categorical variable (3+ levels)
 - Only 2 levels, what test do we use?
- Simple Linear Regression (SLR) is used to find the relationship between one numerical predictor variable and one numerical response (outcome or DV) variable.
- **Multiple Regression** is used to find the relationship between predictor and response controlling for other variables.

- Logistic Regression is used to model the probability of being in a certain group based on numerical predictors.
 - i.e., The response variable is dichotomous
 - This is called a Generalized Linear Model (GLM)
- χ²-Test (Chi-squared Test) is used to test if two categorical variables are associated.
 - For example, is the distribution of education levels more skewed towards higher degrees for men than for women?

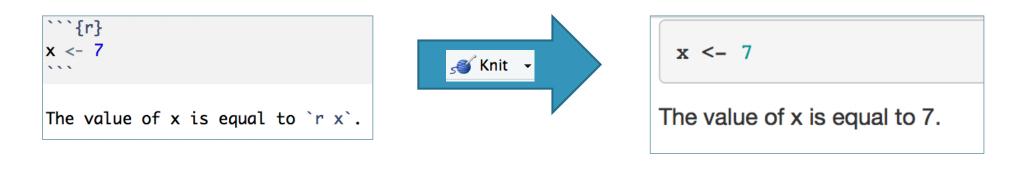
	Response (DV or outcome variable)				
Explanatory (IV or predictor)	Numerical	Categorical (2 levels: dichotomous)			
Categorical (levels = 2)	t-Test	χ²-Test (two-prop test)			
1 Numerical	SLR	Logistic Regression			
Categorical (levels >= 3)	ANOVA	χ²-Test			
2 or more Numerical	Multiple Regression	Logistic Regression			

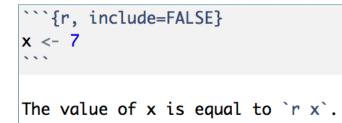
Inference Test	R function
t-Test	t.test()
ANOVA	aov()
SLR and Multiple Regression	lm()
χ²-Test	chisq.test()
Logistic Regression	glm()

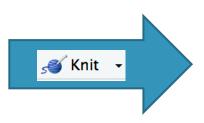
R MARKDOWN FILE

ANOVA and regression.Rmd

REPRODUCIBILITY WITH R MARKDOWN


Reproducibility


- Replicability versus reproducibility
 - **Replicability** similar results when you re-run a study, collecting entirely new data
 - Reproducibility getting the exact same numbers when you re-run analyses using the same data
- Perhaps the biggest advantage to using R is that our analyses can be made fully reproducible with R Markdown and the knitr package (Xie, 2015).
- Reproducibility is a lower bar than replicability
 - the software statcheck (Epskamp & Nuijten, 2014) has found many errors in the psychological literature (Veldkamp, Nuijten, Dominguez-Alvarez, Assen, & Wicherts, 2014)



Reproducibility Results

• We can embed r output right into our text piece in R Markdown

The value of x is equal to 7.

Reproducibility Results

- Like a mini r code chunk, you start with Γ and end with
- We saw an example with t-test output yesterday
 - Paragraph we wanted:

There is a statistically significant difference between women and men on agreeableness, *t*(1654.50) = -10.73, *p* < .001, with women (*M* = 4.77, *SD* = 0.86) scoring higher than men (*M* = 4.38, *SD* = 0.93). It is possible to code in these numbers such that if the data were updated, the text would update as well.

• Coded into text:

There is a statistically significant difference between women and men on agreeableness, *t*(`r round(tmod\$parameter, 2)`) = `r round(tmod\$statistic, 2)`, *p* < `r ifelse(tmod\$p.value > .001, round(tmod\$p.value, 3),.001)`, with women (*M* = `r round(ds[2,7], 2)`, *SD* = `r round(ds[2,8], 2)`) scoring higher than men (*M* = `r round(ds[1,7], 2)`, *SD* = `r round(ds[1,8], 2)`).

Reproducible APA Style Manuscripts

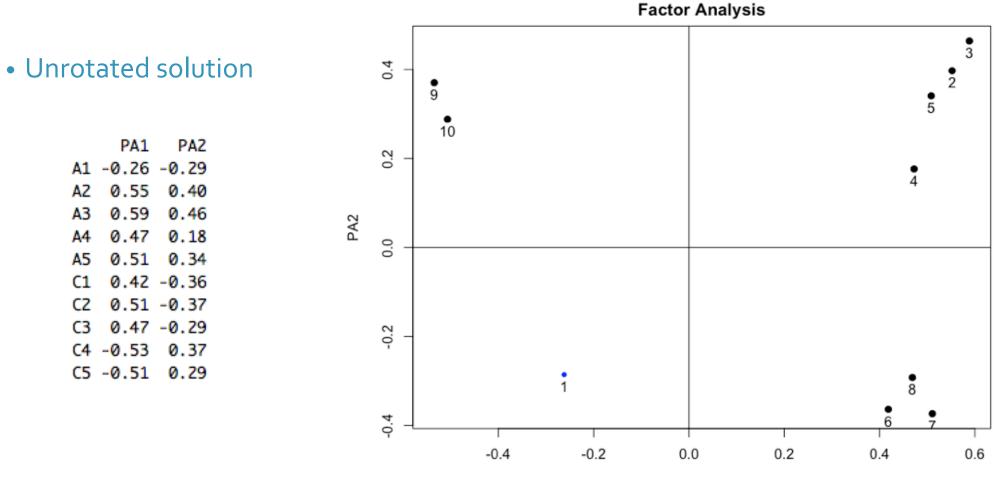
• Aust and Barth (2017) wrote the R package, papaja, that will render that paper in perfect APA style: github.com/crsh/papaja

C Searc	h or jum:	ıp to		Pull request	s Issues	Marketplac	e Explo	re			+ •	• 7
📮 crsh / pa	paja						O V	Vatch - 26	★ Unstar	179	Fork	62
<> Code	() Iss	ues 46	1 Pull requests	s 2 Projects	0	Wiki 💷	nsights					
	-			n R package that -files (PDF and W				-		oduce		
rmarkdown	ара	journal	apa-guidelines	psychology r	manuscript	reproducib	le-paper	reproducible-r	research			
Ĵ	🕝 717 commits 🖗 9 b		₿ 9 branches		ି 2 ୩	eleases		LL 7	contributor	ſS		
Branch: mas	ter 🔻	New pull re	quest			Creat	e new file	Upload files	Find file	Clone or o	downlo	ad -
🕎 crsh Me	rge pull r	equest #202	from crsh/anova_bu	ugfix					Latest con	nmit f41a7co	c on Ap	or 12
in R			Bugfix in `apa	a_print.summary.And	ova.mlm`, s	olves #201				2 m	onths	ago
	files		Fixes typos in	README.						3 m	onths	ago

R MARKDOWN FILE

APA Style R Markdown/ReproducibleAPAstyle.Rmd

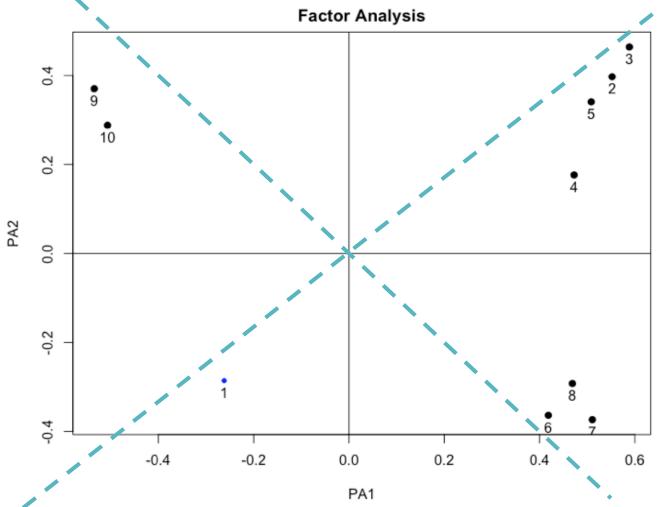
EXPLORATORY FACTOR ANALYSIS

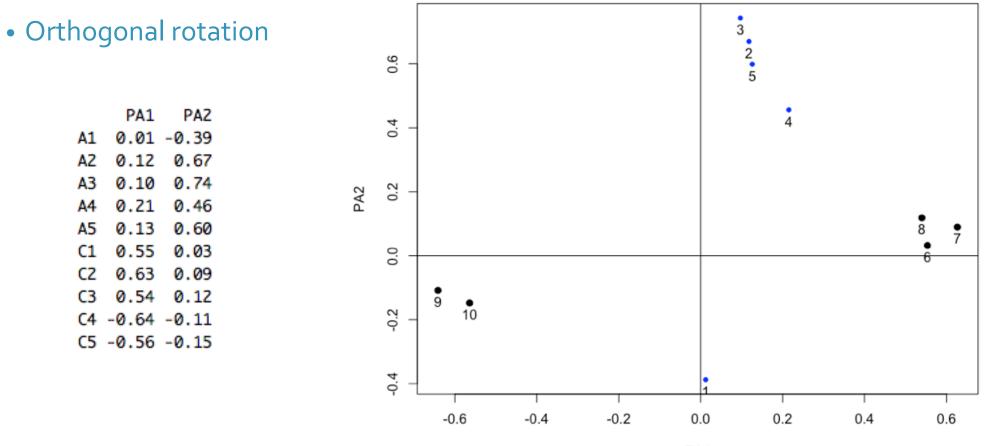

Exploratory Factor Analysis (EFA)

- Often we want to be able to describe a relatively large number of **items** by a much fewer number of **factors**.
- In the bfi dataset there are 25 items measuring personality, but are there just a few underlying factors that are responsible for people's scores on those items?
- We might guess what those are (e.g., extroversion, conscientiousness, etc.), but if we didn't know we could use **EFA** to let the data tell us about the underlying dimensions.

Exploratory Factor Analysis (EFA)

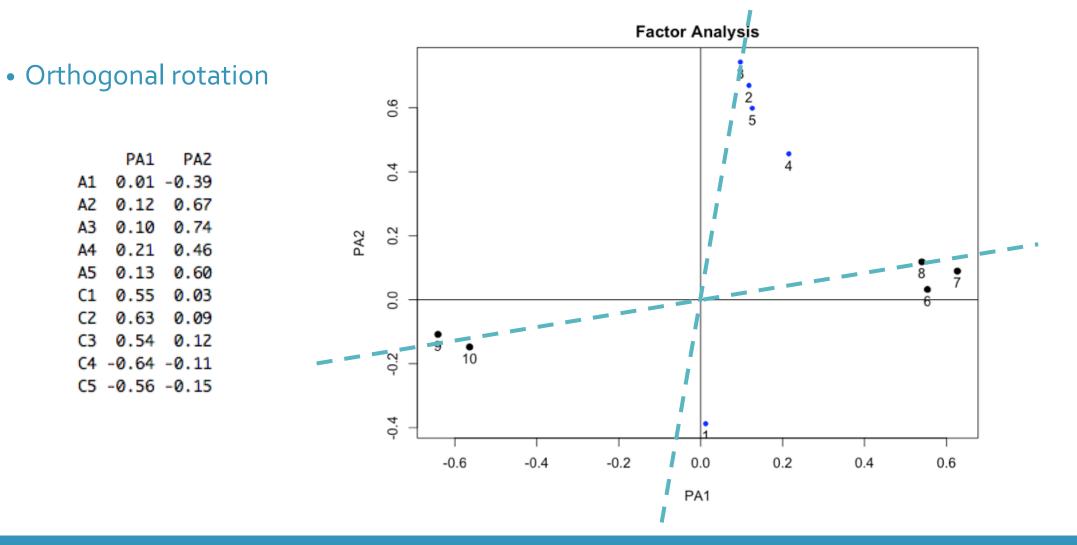
- Exploratory Factor Analysis (EFA) will use inter-correlations among the items to give us a sense of...
 - 1. how many factors may be present,
 - 2. which items can be explained by which factors, and
 - 3. the extent to which these underlying factors are correlated with each other.

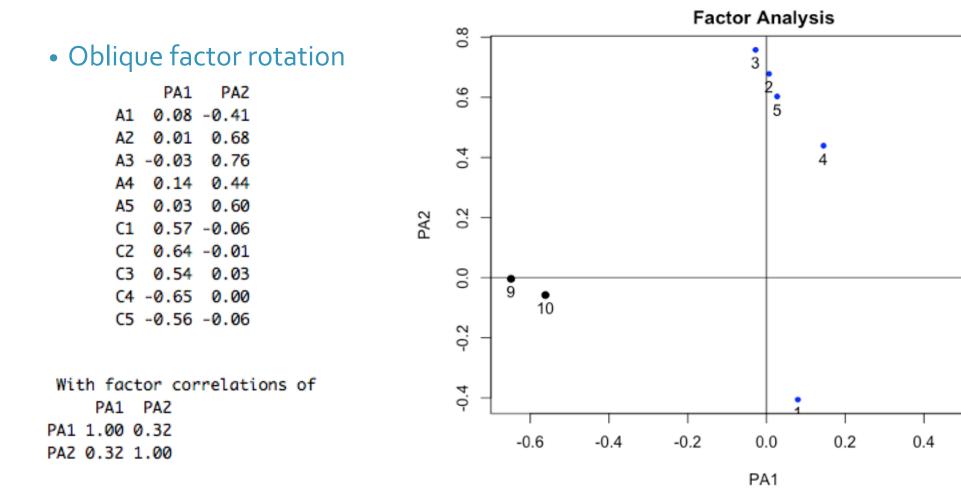

- EFA is just that, exploratory
 - It is important to keep in mind that in the end this is a data driven technique. Meaning that peculiarities in the data may lead you to a rather weird solution.
 - It takes some sense finesse, listen to what your data is telling you.



PA1

• Unrotated solution


	PA1	PAZ
A1	-0.26	-0.29
AZ	0.55	0.40
A3	0.59	0.46
A4	0.47	0.18
A5	0.51	0.34
C1	0.42	-0.36
CZ	0.51	-0.37
C3	0.47	-0.29
C4	-0.53	0.37
C5	-0.51	0.29



PA1

Factor Analysis

Exploratory Factor Analysis (EFA)

8

• 6

0.6

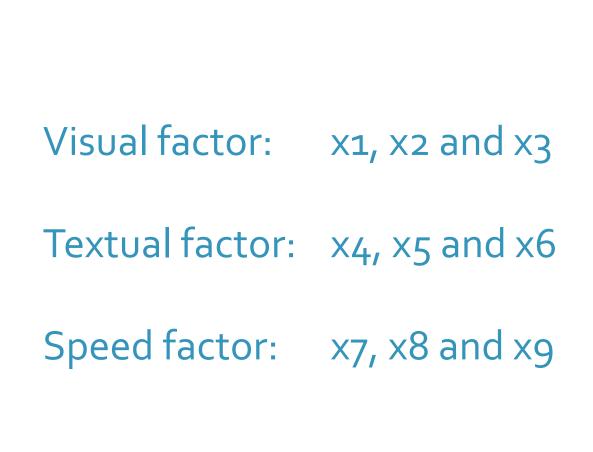
7

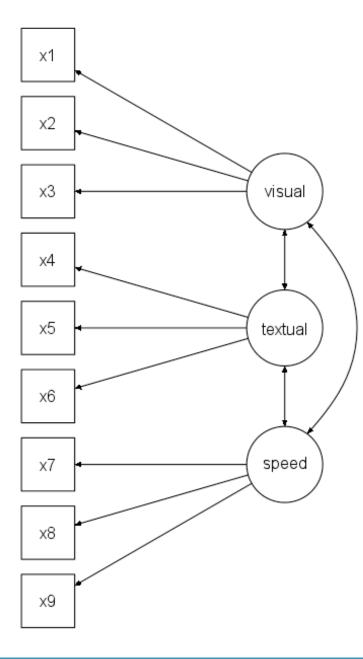
Exploratory Factor Analysis (EFA)

• We will use the psych package

Inference Test	R function
Factor Analysis	fa()
Principal Component Analysis	principal()

R MARKDOWN FILE


Exploratory Factor Analysis.Rmd


CONFIRMATORY FACTOR ANALYSIS

Confirmatory Factor Analysis (CFA)

```{r}
library(lavaan)
data(HolzingerSwineford1939)
````

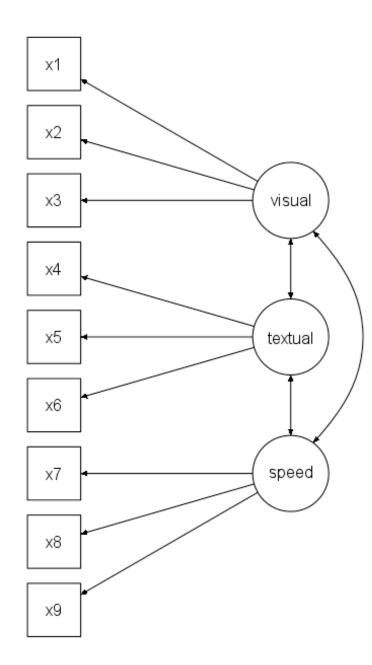
- Mental ability test score from 7th and 8th grade children from two schools
 - A visual factor measured by 3 variables: x1, x2 and x3
 - A *textual* factor measured by 3 variables: x4, x5 and x6
 - A *speed* factor measured by 3 variables: x7, x8 and x9
- We want to test if indeed these measures fall on these three scales as we hypothesize.
- We are *confirming* a hypothesized factor structure instead of exploring.

Confirmatory Factor Analysis (CFA)

• Does the model we have in our heads actually fit the data?

• Assessed with fit statistics

Model									
Data Cor matrix		N	/lodel implie	ed Cor mat	trix				
A1 A2 A3 C1 C2 C3		A1 A	2 A3	C1 C2	C3				
A1 1.000 -0.340 -0.265 0.028 0.016 -0.019	(cns)	A1 1.000							
AZ -0.340 1.000 0.485 0.092 0.136 0.192	C1 ∰	AZ -0.337	1.000						
A3 -0.265 0.485 1.000 0.097 0.141 0.132		A3 -0.256	0.492 1.000						
C1 0.028 0.092 0.097 1.000 0.428 0.308	agr	C1 -0.063	0.122 0.093	1.000					
CZ 0.016 0.136 0.141 0.428 1.000 0.356		CZ -0.074	0.143 0.109	0.418 1.	.000				
C3 -0.019 0.192 0.132 0.308 0.356 1.000		C3 -0.056	0.108 0.082	0.316 0.	370 1.000				
K.	* A1 4		1						
	51.2								


Fit?

Confirmatory Factor Analysis (CFA)

- We will use the R package lavaan to fit CFAs
 - Most widely used **Structural Equation Modeling (SEM)** package in R.
 - Now with Multilevel SEM!!
- •lavaan steps:
 - Step 1: Specify the model
 - Step 2: Fit the model
 - Step 3: Ask for the output you want

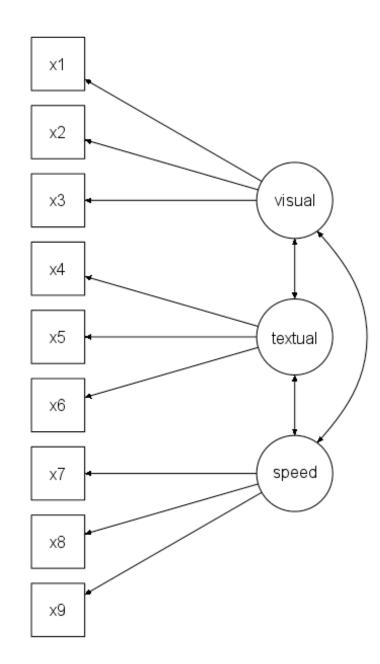
Step 1: Specify the Model

HS.model	<-	'	visual	=~	x1	+	x2	+	x3	
			textual	=~	x4	+	x5	+	хб	
			speed	=~	x7	+	x8	+	x9	

Step 2: Fit the Model

х1 х2 xЗ visual x4 x5 textual x6 speed x7 х8 х9

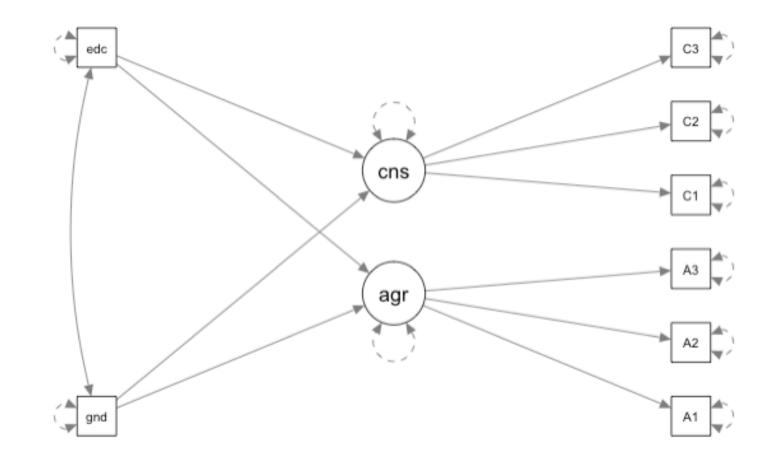
fit <- cfa(HS.model, data = HolzingerSwineford1939)</pre>


Step 3: Ask for the output you want

summary(fit, fit.measures = TRUE)

parameterEstimates(fit)

inspect(fit)


modindices(fit)

Path Analysis and SEM

- Now we can add regression equations in the mix with our latent variables.
- We can use our latent variables as predictors (IVs) or as response variables (DVs).
- Simultaneously estimate multiple regression equations
 - A **multivariate data analysis** approach because we can have multiple response variables.
 - Think solving a system of equations!

Path Analysis and SEM

R MARKDOWN FILE

Confirmatory Factor Analysis and SEM.Rmd